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Abstract—A continuous wavelet transform-based method is presented to
study the nonstationary strength and phase delay of the respiratory sinus
arrhythmia (RSA). The RSA is the cyclic variation of instantaneous heart
rate at the breathing frequency. In studies of cardio-respiratory interaction
during sleep, paced breathing or postural changes, low respiratory frequen-
cies, and fast changes can occur. Comparison on synthetic data presented
here shows that the proposed method outperforms traditional short-time
Fourier-transform analysis in these conditions. On the one hand, wavelet
analysis presents a sufficient frequency-resolution to handle low respira-
tory frequencies, for which time frames should be long in Fourier-based
analysis. On the other hand, it is able to track fast variations of the signals
in both amplitude and phase for which time frames should be short in
Fourier-based analysis.

Index Terms—Cardio-respiratory interaction, continuous wavelet trans-
form (CWT), heart rate variability (HRV), respiratory sinus arrhythmia
(RSA).

I. INTRODUCTION

The heart rate variability (HRV) is traditionally divided in very
low frequency (VLF), low frequency (LF), and high frequency (HF)
components, the frequency bands of which are, respectively, [0.003
Hz, 0.04 Hz], [0.04 Hz, 0.15 Hz] and [0.15 Hz, 0.5 Hz] [1]. In the HF
band, an oscillation can usually be observed at the breathing frequency.
It is called the respiratory sinus arrhythmia (RSA). The study of the
RSA has produced extensive literature both concerning its causes [2],
[3], and the methodology to determine it [1]. It is generally accepted
that RSA amplitude is a noninvasive marker of the activity of the
parasympathetic nervous system [3], [4], and can therefore be used
to infer relative changes in parasympathetic cardiac tone. The RSA
phase delay is a measure of the time delay between respiratory cycles
and RSA. It is an indirect, noninvasive measure of the integration
time of the cardio-respiratory interaction, and can be estimated by
frequency [5], [6] as well as time-domain methods [7].

Dynamic analysis of HRV is traditionally performed by means of
short-time Fourier transform (STFT), following established guide-
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Télécommunications,” Faculté des Sciences Appliquées, Université Libre de
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lines [1]. However, STFT analysis is limited by its time–frequency
resolution tradeoff: a long window gives a better frequency resolution,
and a short window a better time resolution. The window-length opti-
mization is difficult for short or nonstationary time series. In these cases,
outputs are averaged over different states or conditions, and transients
blurred. Therefore, nonstationary spectral methods have been imple-
mented, based on time-variant autoregressive models [8], Wigner–Ville
distribution [8], [9], selective discrete Fourier transform [10], or dis-
crete or continuous wavelet transform, using various mother wavelets
(e.g., Daubechies 4 [11], harmonic wavelet [12]).

The aim of this brief is to present an analysis method of the
cardio-respiratory interaction based on continuous wavelet transforms
(CWTs). It is compared to STFT analysis on synthetic data, with a
view to handle low breathing frequencies and fast variations. This is of
particular relevance in the study of RSA dynamics during sleep, where
respiratory frequencies below 0.2 Hz (e.g., [13]) occur simultaneously
to fast variations in RSA, due to changes in sleep stage and correspond-
ing sympatho-vagal balance [14]. Sudden RSA changes, accompanied
by low breathing frequencies, are also present in paced breathing pro-
tocols [7] and postural changes (tilt) experiments [8], [10].

II. METHODS

A. Algorithm

The algorithm calculates the gain and phase delay of the RSA based
on CWTs. The analysis is limited to time intervals where the estimated
respiratory frequency and the estimated frequency of the main peak in
the HF band of HRV are equal within ±0.02 Hz.

Continuous wavelet transform analysis: The time-dependent power
spectra of the respiratory and HRV signal are calculated by means of
CWTs.

The CWT of a signal x(t) is defined as

CWT(t,λ) =
∫ +∞

−∞
x (u)

1√
λ

ψ∗
(

u − t

λ

)
du (1)

where ψ(t) is the mother wavelet and CWT(λ, t) the wavelet transform
coefficient for scale λ at time t. The time- and frequency resolution
of the wavelet ψλ(t) are defined as 4σt and 4σf , respectively. σt

and σf are the standard deviation of |ψλ(t)|2 and |ψ̂λ(f )|2 , where

ψλ(t) = (1/
√

λ)ψ(u − t)/λ and ˆ symbolizes the Fourier transform.
The amplitude and phase of the complex CWT coefficients obtained

using an analytical mother wavelet are estimates of the envelope and
instantaneous phase of the spectral components of the signal in the
frequency-band centered on the central frequency of the wavelet [15].
Here, the complex Morlet wavelet [15] is used because it is a Gaussian-
shaped analytical wavelet. This shape optimizes the product of the time-
and frequency resolutions of the wavelet.

The time resolution in the HF band should be close to 30 sec,
the duration of standard sleep stage scoring windows. On the other
hand, the frequency resolution in the VLF and LF bands should
be optimized. To satisfy both criteria, parameter f0 , the central fre-
quency of the Morlet mother wavelet, is set to 15/2π Hz in this
study. The time resolution then varies from 45 to 14 sec in the HF
band, and the frequency resolution varies from 7 to 28 mHz in the LF
band.

From the CWT of the respiratory volume signal, the respiratory
frequency fresp (t) is estimated by the frequency corresponding to
the maximal CWT amplitude for each time step. The corresponding
phase Φresp (t) is given by the CWT phase at frequency fresp (t).
The energy Eresp (t) is estimated by the surface of the peak, using a
Gaussian approximation of the peak’s shape. The frequency fHF (t),
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corresponding phase ΦHF (t) and energy EHF (t) of the HF peak of
the HRV signal is estimated in a similar way from the CWT of the
HRV signal in the HF band.

The amplitude ratio (AR) and phase delay (in seconds) be-
tween the respiratory signal and RSA component of the HRV
signal are given by AR(t) = EHF (t)/Eresp (t) and ∆Φt (t) =
(Φresp (t) − ΦHF (t))/2πfresp .

B. Synthetic Data

Synthetic cardiac and respiratory data with varying phase, ampli-
tude, and frequency are created to test the algorithm, and to compare it
to STFT-based algorithms.

The respiratory volume signal Sresp (t) is synthesized by means
of a sinusoid of frequency fresp , amplitude a1 , and phase Φt0 , to
which white noise was added (2). All parameters can vary in time,
corresponding to changes in breathing frequencies, tidal volume, and
phase drifts or “resets” of the respiratory cycle.

Instantaneous heart period variability, represented by the uniformly
resampled RR-interval time series SURRI(t), is synthesized by sum-
ming a constant b0 (representing the average heart beat interval) with
three sinusoids of amplitudes bVLF , bLF , bHF , and of frequencies fVLF ,
fLF , fHF (3). Because the HF component represents the RSA, fHF is
set equal to fresp . A phase parameter Φt0 + ∆Φt is added in the HF
component to model the phase difference between heart rate and res-
piratory signals. White noise is added to the phase and to the signal.

The synthetic respiratory and heart-rate interval signals are thus
given by

Sresp (t) = a1 cos(2πfresp (t + Φt0 )) + noise(t) (2)

SURRI(t) = b0 + bVLF cos(2πfVLF t) + bLF cos(2πfLF t)

+ bHF cos(2πfresp (t + Φt0 + ∆Φt + noiseΦ (t)))

+ noise(t). (3)

III. RESULTS

The performance of the CWT-based algorithm is compared to the
results obtained via short-time Fourier transform-based methods, using
30 and 120 sec long Hamming windows, STFT30 and STFT120. To
study the dynamics of the cardio-respiratory interaction, the major
limitations arise from the ability of the method to detect the RSA
peak, and to track fast changes. Noise is not a major issue, because
the interpolated instantaneous heart period (RR-interval) time series
used in HRV analysis usually presents low noise levels [1]. Therefore,
the algorithms are compared with regard to the value of the respiratory
frequency and to time-varying phase delays.

1) Time-varying respiratory frequency: The sensitivity of the meth-
ods to respiratory frequency changes is evaluated on synthetic data with
a sinusoidally modulated respiratory frequency. The variation range
covers the frequency interval of normal breathing [0.15 Hz, 0.35 Hz].
fresp (t) = fresp (1 + Am od cos(2πfm od t)), where fresp = 0.25 Hz,
Am od = 0.4, and fm od = 0.0025 Hz. The two LF components of
the URRI signal are modeled by a unique peak at 0.1 Hz. The
other parameters of (2) and (3) are a1 = 0.2, b0 = 1 sec, bVLF = 0,
bLF = 0.06 sec, fLF = 0.1 Hz, bHF = 0.03 sec, Φt0 = 0, ∆Φt = 0,
noiseΦ = 0, and noise(t) is white noise with a maximal amplitude
of 0.02 sec.

The upper panel of Fig. 1 shows the power spectrum of the URRI
series estimated by the CWT method. The ridge in the power spectrum
at the respiratory frequency can be easily distinguished from the LF
component (at 0.1 Hz) at all time steps. The lower panels show the

Fig. 1. Synthetic data with a respiratory frequency varying from 0.35 to
0.15 Hz: the first panel shows the power spectrum of the URRI signal estimated
by CWT. The ridge at the respiratory frequency can be distinguished from the
LF component at 0.1 Hz for all time steps. The second and third panels show the
normalized power spectra of the synthetic HRV signal, estimated by STFT30
(dashed line), STFT120 (dotted line), and CWT (plain line), at time 0 min
(second panel) and 3.5 min (third panel). In the second panel, for time 0 min,
all algorithms are able to distinguish between the two peaks. In the third panel,
for time 3.5 min, only STFT120 and CWT give acceptable results.

Fig. 2. Synthetic data with a phase delay varying from −0.5 to −1.5 sec, with
white noise of maximal amplitude 0.02 sec added to the phase: phase delay
∆Φt estimated by STFT30 (dashed line), STFT120 (dotted line) and CWT
(plain line). STFT30 and CWT are able to track similarly the ∆Φt variations,
while STFT120 performs less accurately.

power spectra obtained by the STFT30, STFT120, and CWT methods,
at the beginning and end of the signal. When the frequencies of the two
peaks are far from each other, the peaks can be separated by all methods.
However, when the respiratory frequency gets closer to the LF − HF
frontier, STFT30 fails because the frequency resolution cannot separate
the HF peak from the neighboring LF peak.

2) Time-varying phase delay: The ability to track phase delays
is evaluated on synthetic data with a constant respiratory frequency
fresp = 0.3 Hz and a time-varying phase delay. The phase delay
expressed in seconds ∆Φt (t) varies linearly from −0.500 sec to
−1.500 sec in 50 sec, between two constant plateaus. noiseΦ is white
noise with a maximal amplitude of 0.02 sec. The remaining parame-
ters of (2) and (3) are a1 = 0.2, Φt0 = 0, b0 = 1 sec, bVLF = 0.07 sec,
fVLF = 0.04 Hz, bLF = 0.06 sec, fLF = 0.1 Hz, bHF = 0.06 sec, and
noise(t) = 0.

Fig. 2 shows the phase delay ∆Φt (t) estimated by STFT30,
STFT120, and CWT, together with the reference. STFT30 and CWT
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are able to track similarly the ∆Φt variations, while STFT120 per-
forms less accurately. Indeed, the maximal estimation errors are 0.059,
0.064, and 0.186 sec for STFT30, CWT, and STFT120, respectively.
The poor results of STFT120 are due to its low time resolution: results
are averaged over the window length.

The algorithm’s ability to track fast changes depends on its time
resolution. It can be quantified via the rise time of the obtained
phase response to an imposed step in the phase delay. For STFT30
and STFT120, the rise time from 10% to 90% of the final value
is independent of the respiratory frequency, and equal to 15 and
55 sec, respectively. For CWT, it is equal to 15 sec at fresp = 0.35 Hz,
and 34 sec at fresp = 0.15 Hz. These data confirm that CWT and
STFT30 perform similarly at high respiratory frequencies, while
STFT120 performs worse. Although CWT does not perform as
well for low as for high respiratory frequencies, it still outperforms
STFT120. For low respiratory frequencies, STFT30 theoretically per-
forms best in tracking changes. However, it is unable to isolate the HF
peak.

IV. DISCUSSION AND CONCLUSION

A CWT-based algorithm is presented for the analysis of RSA. The
proposed method is compared on synthetic data to STFT-based ana-
lyzes using short or long time-windows (30 and 120 sec). These win-
dow lengths have been chosen because the first gives the desired time
resolution in the HF band, while the second is a standard compromise
for studying HRV.

Results on synthetic data show that neither STFT30 nor STFT120
is able to simultaneously and accurately identify low respiratory fre-
quencies and transients. On the one hand, Fourier-based analysis with
a short window cannot distinguish between LF and HF peaks in the
URRI signal, when the respiratory frequency drops below 0.2 Hz. On
the other hand, Fourier-based analysis with a long window is not able
to track fast phase delay variations.

Results obtained with the CWT-based method on synthetic data
show that the method is able to handle both limitations of the STFT-
based algorithms. This is explained by the intrinsic variation of the
trade-off between time- and frequency resolutions in CWTs: a low
time- and high frequency resolution are used to analyze low fre-
quencies, which allows the detection of the HF component of HRV
even for low respiratory frequencies, and a high time- and low fre-
quency resolution to analyze high frequencies, which allows the
tracking of fast variations. The proposed method is, therefore, bet-
ter suited than Fourier-based analyzes for the study of cardio-
respiratory interaction dynamics, when low breathing frequencies are
present.
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