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Abstract— A continuous wavelet transform-based method is
presented to study the non-stationary strength and phase delay
of the respiratory sinus arrhythmia (RSA). RSA is the cyclic
variation of instantaneous heart rate at the breathing frequency.
In studies of cardio-respiratory interaction during sleep, paced
breathing or postural changes, low respiratory frequencies and
fast changes can occur. Comparison on synthetic data presented
here shows that the proposed method outperforms traditional
short-time Fourier-transform analysis in these conditions. On
the one hand, wavelet analysis presents a sufficient frequency-
resolution to handle low respiratory frequencies, for which time-
frames should be long in Fourier-based analysis. On the other
hand, it is able to track fast variations of the signals in both
amplitude and phase, for which time-frames should be short in
Fourier-based analysis.

Index Terms—Continuous wavelet transform, cardio-
respiratory interaction, heart rate variability, respiratory sinus
arrhythmia.

I. INTRODUCTION

HE heart rate variability (HRV) is traditionally divided in

very low frequency (VLF), low frequency (LF), and high
frequency (HF) components, the frequency bands of which
are respectively [0.003Hz,0.04Hz], [0.04Hz,0.15H 2], and
[0.15Hz,0.5H=] ( [1]). In the HF band, an oscillation can
usually be observed at the breathing frequency. It is called
the respiratory sinus arrhythmia (RSA). The study of RSA has
produced extensive literature both concerning its causes [2],
[3], and the methodology to determine it [1]. It is generally
accepted that RSA amplitude is a non-invasive marker of the
activity of the parasympathetic nervous system [3], [4] and can
therefore be used to infer relative changes in parasympathetic
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cardiac tone. RSA phase delay is a measure of the time
delay between respiratory cycles and RSA. It is an indirect,
non-invasive measure of the integration time of the cardio-
respiratory interaction, and can be estimated by frequency [5],
[6] as well as time domain methods [7].

Dynamic analysis of HRV is traditionally performed by
means of short-time Fourier transform (STFT), following
established guidelines [1]. However, STFT analysis is limited
by its time-frequency resolution trade-off: a long window gives
a better frequency-resolution, and a short window a better
time-resolution. The window-length optimization is difficult
for short or non-stationary time series. In these cases, outputs
are averaged over different states or conditions, and transients
blurred. Therefore, non-stationary spectral methods have been
implemented, based on time-variant autoregressive models [8],
Wigner-Ville Distribution [8], [9], selective discrete Fourier
transform [10], or discrete or continuous wavelet transform,
using various mother wavelets (e.g. Daubechies 4 [11], har-
monic wavelet [12]).

The aim of this article is to present an analysis method of
the cardio-respiratory interaction based on continuous wavelet
transforms (CWT). It is compared to STFT analysis on syn-
thetic data, with a view to handle low breathing frequencies
and fast variations. This is of particular relevance in the study
of RSA dynamics during sleep, where respiratory frequencies
below 0.2H z (e.g [13]) occur simultaneously to fast variations
in RSA, due to changes in sleep stage and corresponding
sympatho-vagal balance [14]. Sudden RSA changes, accom-
panied by low breathing frequencies, are also present in paced
breathing protocols [7], and postural changes (tilt) experiments
(81, [10].

II. METHODS
A. Algorithm

The algorithm calculates the gain and phase delay of the
RSA, based on CWTs. The analysis is limited to time-intervals
where the estimated respiratory frequency and the estimated
frequency of the main peak in the HF band of HRV are equal
within £0.02H z.

a) Continuous wavelet transform analysis: The time-
dependent power spectra of the respiratory and HRV signal
are calculated by means of CWTs.

The continuous wavelet transform of a signal z(¢) is defined

as
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where t(t) is the mother wavelet, and CWT(A,t) the
wavelet transform coefficient for scale A at time ¢. The time-
and frequency-resolution of the wavelet 1, (¢) are defined as
404 and 407, respectively. o, and o are the standard deviation

. 2
of [¥a()[* and [da(f)| s where ¥a(t) = 5o (%5%) and”
symbolizes the Fourier transform.

The amplitude and phase of the complex CWT coefficients
obtained using an analytical mother wavelet are estimates of
the envelope and instantaneous phase of the spectral compo-
nents of the signal in the frequency-band centred on the central
frequency of the wavelet [15]. Here, the complex Morlet
wavelet [15] is used because it is a Gaussian-shaped analytical
wavelet. This shape optimizes the product of the time- and
frequency-resolutions of the wavelet.

The time-resolution in the HF band should be close to 30s,
the duration of standard sleep stage scoring windows. On the
other hand, the frequency-resolution in the VLF and LF bands
should be optimized. To satisfy both criteria, parameter f,
the central frequency of the Morlet mother wavelet, is set to
% Hz in this study. The time-resolution then varies from 45s
to 14s in the HF band, and the frequency-resolution varies
from 7"mHz to 28mH z in the LF band.

From the CWT of the respiratory volume signal, the res-
piratory frequency fresp(t) is estimated by the frequency
corresponding to the maximal CWT amplitude for each time-
step. The corresponding phase ®,.4,(t) is given by the CWT
phase at frequency fresp(t). The energy E,.p(t) is estimated
by the surface of the peak, using a Gaussian approximation of
the peak’s shape. The frequency fpp(t), corresponding phase
Dy p(t) and energy Eyp(t) of the HF peak of the HRV signal
is estimated in a similar way from the CWT of the HRV signal
in the HF band.

The amplitude ratio and phase delay (in seconds) be-
tween the respiratory signal and RSA component of the
HRV signal are given by AR(t) = gji((% and A®,(t) =
Presp(t) —Purri(t)

27 fresp

B. Synthetic data

Synthetic cardiac and respiratory data with varying phase,
amplitude and frequency are created to test the algorithm, and
to compare it to STFT-based algorithms.

The respiratory volume signal S,.s,(t) is synthesized by
means of a sinusoid of frequency f,csp, amplitude a; and
phase ®;y, to which white noise was added (Eq. 2). All
parameters can vary in time, corresponding to changes in
breathing frequencies, tidal volume and phase drifts or “resets”
of the respiratory cycle.

Instantaneous heart period variability, represented by the
uniformly resampled RR-interval time series Syrpgi(t), is
synthesized by summing a constant by (representing the av-
erage heart beat interval) with three sinusoids of amplitudes
bvrr, brr, bur, and of frequencies fvrr, fLr, fur (Eq.
3). Because the HF component represents the RSA, fyp is
set equal to fresp. A phase parameter ®;o + A®, is added
in the HF component to model the phase difference between
heart rate and respiratory signals. White noise is added to the
phase, and to the signal.

Power spectrum of the URRI signal estimated by CWT
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Fig. 1. Synthetic data with a respiratory frequency varying from 0.35H z
to 0.15H z: the first panel shows the power spectrum of the URRI signal
estimated by CWT. The ridge at the respiratory frequency can be distinguished
from the low-frequency component at 0.1H z for all time-steps. The second
and third panels show the normalized power spectra of the synthetic HRV
signal, estimated by STFT30 (dashed line), STFT120 (dotted line) and CWT
(plain line), at time Omzen (second panel) and 3.5min (third panel). In the
second panel, for time Omin, all algorithms are able to distinguish between
the two peaks. In the third panel, for time 3.5min, only STFT120 and CWT
give acceptable results.

The synthetic respiratory and heart-rate interval signals are
thus given by

Sresp(t) = a1€08(2T fresp(t + Pyo)) + noise(t), (2)
Surri(t) = by + byrrcos(2m fyLpt) + brrcos(2m frpt)
+ b pcos(27 fresp(t + @0 + AP, + noises(t)))

+ noise(t). (3)

III. RESULTS

The performance of the CWT-based algorithm is compared
to the results obtained via short-time Fourier transform-based
methods, using 30 s and 120 s-long Hamming windows,
STFT30 and STFTI120. To study the dynamics of the cardio-
respiratory interaction, the major limitations arise from the
ability of the method to detect the RSA peak, and to track fast
changes. Noise is not a major issue, because the interpolated
instantaneous heart period (R R-interval) time series used in
HRYV analysis usually presents low noise levels [1]. Therefore,
the algorithms are compared with regard to the value of the
respiratory frequency and to time-varying phase delays.

b) Time-varying respiratory frequency: The sensitivity
of the methods to respiratory frequency changes is evaluated
on synthetic data with a sinusoidally modulated respiratory
frequency. The variation range covers the frequency-interval
of normal breathing [0.15H 2,0.35Hz2]. fresp(t) = fresp(1+
Apmodcos(2T froat)), wWhere fresp = 0.25Hz, Anoq = 04
and f,0q = 0.0025Hz. The two low-frequency components
of the URRI signal are modelled by a unique peak at 0.1H z.
The other parameters of Eq. 2 and 3 are a3 = 0.2, by = 1s,
bvir = 0, bpp = 0.06s, frr = 0.1Hz, bgr = 0.03s,
b0 =0, AP, = 0, noisey = 0, and noise(t) is white noise
with a maximal amplitude of 0.02s.
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Fig. 2. Synthetic data with a phase delay varying from —0.5s to —1.5s,
with white noise of maximal amplitude 0.02s added to the phase: phase delay
AP, estimated by STFT30 (dashed line), STFT120 (dotted line) and CWT
(plain line). STFT30 and CWT are able to track similarly the A®; variations,
while STFT120 performs less accurately.

The upper panel of Fig. 1 shows the power spectrum of
the URRI series estimated by the CWT method. The ridge in
the power spectrum at the respiratory frequency can be easily
distinguished from the low-frequency component (at 0.1H z)
at all time-steps. The lower panels show the power spectra
obtained by the STFT30, STFT120 and CWT methods, at the
beginning and end of the signal. When the frequencies of the
two peaks are far from each other, the peaks can be separated
by all methods. However, when the respiratory frequency gets
closer to the LF — HF' frontier, STFT30 fails, because the
frequency resolution cannot separate the HF-peak from the
neighboring LF-peak.

c) Time-varying phase delay: The ability to track phase
delays is evaluated on synthetic data with a constant respira-
tory frequency fresp = 0.3H z and a time-varying phase delay.
The phase delay expressed in seconds A®(t) varies linearly
from —0.500s to —1.500s in 50s, between two constant
plateaus. noiseg is white noise with a maximal amplitude of
0.02s. The remaining parameters of Eq. 2 and 3 are a; = 0.2,
D9 = 0, bg = 1s, byrr = 0.07s, fyrr = 0.04Hz,
brr =0.06s, frp =0.1Hz, byr = 0.06s, and noise(t) = 0.

Fig. 2 shows the phase delay A®,(t) estimated by STFT30,
STFT120 and CWT, together with the reference. STFT30
and CWT are able to track similarly the A®, variations,
while STFT120 performs less accurately. Indeed, the max-
imal estimation errors are 0.059s, 0.064s and 0.186s for
STFT30, CWT and STFT120, respectively. The poor results
of STFT120 are due to its low time-resolution: results are
averaged over the window-length.

The algorithm’s ability to track fast changes depends on its
time-resolution. It can be quantified via the rise time of the
obtained phase response to an imposed step in the phase delay.
For STFT30 and STFT120, the rise time from 10% to 90%
of the final value is independent of the respiratory frequency,
and equal to 15s and 55s, respectively. For CWT, it is equal
to 155 at fresp = 0.35H 2, and 34s at fresp = 0.15H 2. These
data confirm that CWT and STFT30 perform similarly at
high respiratory frequencies, while STFT120 performs worse.
Although CWT does not perform as well for low as for high
respiratory frequencies, it still outperforms STFT120. For low
respiratory frequencies, STFT30 theoretically performs best in
tracking changes. However, it is unable to isolate the HF peak.

IV. DISCUSSION AND CONCLUSION

A continuous wavelet transform-based algorithm is pre-
sented for the analysis of respiratory sinus arrhythmia. The
proposed method is compared on synthetic data to short-time
Fourier transform-based analyses using short or long time-
windows (30s and 120s). These window-lengths have been
chosen because the first gives the desired time-resolution in
the HF band, while the second is a standard compromise for
studying HRV.

Results on synthetic data show that neither STFT30 nor
STFT120 are able to simultaneously and accurately identify
low respiratory frequencies and transients. On the one hand,
Fourier-based analysis with a short window cannot distinguish
between LF and HF peaks in the URRI signal, when the
respiratory frequency drops below 0.2H z. On the other hand,
Fourier-based analysis with a long window is not able to track
fast phase delay variations.

Results obtained with the CWT-based method on syn-
thetic data show that the method is able to handle both
limitations of the STFT-based algorithms. This is explained
by the intrinsic variation of the trade-off between time-
and frequency-resolutions in CWTs: a low time- and high
frequency-resolution are used to analyze low frequencies,
which allows the detection of the HF component of HRV
even for low respiratory frequencies, and a high time- and
low frequency-resolution to analyze high frequencies, which
allows the tracking of fast variations. The proposed method
is therefore better suited than Fourier-based analyses for the
study of cardio-respiratory interaction dynamics, when low
breathing frequencies are present.

REFERENCES

[1] M. Malik, et al., “Heart rate variability: Standards of measurement,
physiological interpretation, and clinical use,” Eur Heart J, vol. 17, no. 3,
pp- 354-381, 1996.

[2] S. Akselrod, et al., “Power spectrum analysis of heart rate fluctuation: a
quantitative probe of beat-to-beat cardiovascular control,” Science, vol.
213, no. 4504, pp. 220-222, 1981.

[3] M. Piepoli, et al., “Origin of respiratory sinus arrhythmia in conscious
humans : An important role for arterial carotid baroreceptors,” Circula-
tion, vol. 95, no. 7, pp. 1813-1821, 1997.

[4] E. Pyetan and S. Akselrod, “Do the high-frequency indexes of hrv
provide a faithful assessment of cardiac vagal tone? a critical theoretical
evaluation,” IEEE Trans Biomed Eng, vol. 50, no. 6, pp. 777-783, 2003.

[51 J. P. Saul, et al., “Transfer function analysis of the circulation: unique
insights into cardiovascular regulation,” AJP: Heart Circ Physiol, vol.
261, no. 4, pp. H1231-1245, 1991.

[6] W. Cooke, et al., “Human responses to upright tilt: a window on central
autonomic integration,” J Physiol, vol. 517, no. 2, pp. 617-628, 1999.

[71 P. Migeotte and Y. Verbandt, “A novel algorithm for the heart rate
variability analysis of short-term recordings: polar representation of
respiratory sinus arrhythmia,” Comput Biomed Res, vol. 32, pp. 55-66,
1999.

[8] S. Cerutti, A.M.Bianchi, and L.T.Mainardi, “Advanced spectral methods
for detecting dynamic behaviour,” Auton Neurosci, vol. 90, pp. 3-12,
2001.

[9] H. Chan, H. Huang, and J. Lin, “Time-frequency analysis of heart rate

variability during transient segments,” Annals Biomed Eng, vol. 29,

no. 11, pp. 983-996, 2001.

L. Keselbrener and S. Akselrod, “Selective discrete fourier transform

algorithm for time-frequency analysis: method and application on simu-

lated and cardiovascular signals.” I[EEE Trans Biomed Eng, vol. 43, pp.

789-802, 1996.

V. Pichot, et al., “Wavelet transform to quantify heart rate variability

and to assess its instantaneous changes,” J Appl Physiol, vol. 86, pp.

1081-1091, 1999.

[10]

(11]



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. XX, XXXXXX 2008

[12] R. Bates, M. Hilton, K. Godfrey, and M. Chappell, “Comparison of
methods for harmonic wavelet analysis of heart rate variability,” IEE
Proc Sci Meas Tech, vol. 145, no. 6, pp. 291-300, 1998.

[13] A. Elliott, et al., “Microgravity reduces sleep-disordered breathing in
humans,” Am J Resp Crit Care Med, vol. 164, no. 3, pp. 478485,
2001.

[14] A. Viola, et al., “Sleep processes exert a predominant influence on the
24-h profile of heart rate variability,” J Biol Rhythms, vol. 17, no. 6, pp.
539-47, December 2002.

[15] P.S.Addison, The illustrated wavelet transform handbook:introductory
theory and applications in science, engineering,medicine and finance.
Institute of Physics Publishing, 2002.



